On Commutant Lifting with Finite Defect, II

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bi-Isometries and Commutant Lifting

In a previous paper, the authors obtained a model for a bi-isometry, that is, a pair of commuting isometries on complex Hilbert space. This representation is based on the canonical model of Sz. Nagy and the third author. One approach to describing the invariant subspaces for such a bi-isometry using this model is to consider isometric intertwining maps from another such model to the given one. ...

متن کامل

Commutant Lifting for Commuting Row Contractions

The commutant lifting theorem of Sz.Nagy and Foiaş [22, 21] is a central result in the dilation theory of a single contraction. It states that if T ∈ B(H) is a contraction with isometric dilation V acting on K ⊃ H, and TX = XT , then there is an operator Y with ‖Y ‖ = ‖X‖, V Y = Y V and PHY = XPH. This result is equivalent to Ando’s Theorem that two commuting contractions have a joint (power) d...

متن کامل

Relaxed Commutant Lifting: Existence of a Unique Solution

Abstract. In this paper we present necessary and sufficient conditions for the existence of a unique solution to the relaxed commutant lifting problem. The obtained conditions are more complicated than those for the classical commutant lifting setting, and earlier obtained sufficient conditions turn out not to be necessary conditions. It is also shown that these conditions simplify in certain s...

متن کامل

Commutant lifting theorem for n-tuples of contractions

We show that the commutant lifting theorem for n-tuples of commuting contractions with regular dilations fails to be true. A positive answer is given for operators which ”double intertwine” given n-tuples of contractions. The commutant lifting theorem is one of the most important results of the Sz. Nagy—Foias dilation theory. It is usually stated in the following way: Theorem. Let T and T ′ be ...

متن کامل

On the classification of binary shifts of finite commutant index.

We provide a complete classification up to conjugacy of the binary shifts of finite commutant index on the hyperfinite II(1), factor. There is a natural correspondence between the conjugacy classes of these shifts and polynomials over GF(2) satisfying a certain duality condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1997

ISSN: 0022-1236

DOI: 10.1006/jfan.1996.2992